
Growth of Nanostructures  

3D nanomaterials


Various kinds of nanomaterials


0D spheres 
and clusters


1D nanofibers, wires, 
and rods


2D films, plates, 
and networks
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 Quantum confinement 

(Scientific American) 
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•  Schematic description: particles are 
deposited on a surface and become adsorbed 
(adatoms). They diffuse around the surface 
and can be bound to the surface. Vice versa, 
unbinding and desorption happens. 
•  The kinetics of epitaxial growth is determined 
by the surface diffusion and nucleation.  

Growth kinetics 

Diffusion
 Nucleation
 Growth




Atomic-level processes 

Variables: R (or F), T, time sequences (t) 
Parameters: Ea, Ed, Eb, mobility, 

defects… 
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Atomistic Models for Crystalline Surfaces 

Terrace Step Kink (TSK) model 


Phase growth or transition simply involves the 
bond forming and bond breaking 



Growth modes 

      Island                Layer + Island              Layer 
Volmer-Weber     Stranski-Krastanov     Frank-VdM 

γs	
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  + γi
γs	
  	
  <γf	
  	
  + γi




Thin Film Growth Process




Growth modes at diff. T 

150 K 300 K 
3D islands 2D islands Non-crystalline 
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•  Homoepitaxy: a crystalline film is grown on 
a substrate or film of the same material.  

•  Heteroepitaxy: a crystalline film grows on a 
crystalline substrate or film of a different 
material.  

Epitaxial Growth 

Epitaxial films take on a lattice structure and 
orientation identical to those of the substrate.  



•  Spontaneous growth: 
–  Evaporation condensation 
–  Dissolution condensation 
–  Vapor-Liquid-Solid growth (VLS) 
–  Stress induced re-crystallization 

•  Template-based synthesis: 
–  Electrochemical deposition 
–  Electrophoretic deposition 
–  Colloid dispersion, melt, or solution filling 
–  Conversion with chemical reaction 

•  Electro-spinning 
•  Lithography (top-down) 
 

Techniques for making nanowires 



   
•  Anisotropic growth is required  

•  Crystal growth proceeds along one direction, 
where as there is no growth along other 
direction. 

•  Uniformly sized nanowires (i.e. the same 
diameter along the longitudinal direction of a 
given nanowire) 

General characters for spontaneous growth 



•  Nanowires and nanorods grown by this method 
are commonly single crystals with fewer 
imperfections 

•  The formation of nanowires or nanorods is due 
to the anisotropic growth. 

•  The general idea is that the different facets in a 
crystal have different growth rates  

•  There is no control on the direction of growth of 
nanowire in this method  

Vapor-Solid (VS) technique 



“Nanostructures of zinc oxide,” by Zhon Lin Wang 



  
 General Idea: 
 A second phase material, commonly referred to as 
catalyst, is introduces to direct and confine the 
crystal growth on a specific orientation and within a 
confined area. 

 
– Catalyst forms a liquid droplet by itself  
– Acts as a trap for growth species  
– The growth species is evaporated first and 

then diffuses and dissolves into a liquid 
droplet 

–  It precipitates at the interface between the 
substrate and the liquid 

  

Vapor Liquid Solid Growth (VLS) 

University Of South Alabama, EE Department 



  
  

Growth species in the catalyst droplets subsequently 
precipitates at the growth surface resulting in the 
one-directional growth  

VLS Growth 



  
  

“A Non-Traditional Vapor-Liquid-Solid Method for Bulk Synthesis of 
Semiconductor Nanowires,” Shashank Sharma, and Mahendra K. 
Sunkara 

VLS Growth 



  
  

TEM and selected area diffraction image of a single 
crystal ZnO nanorod.(~20 nm width).  

“ZnO nanowire growth and devices,” Y.W. Heoa, D.P. Nortona, et al.


VLS Growth 



Surface Diffusion 
Wien, Feb 2006 
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•  Surface energy is given by  

•  Standard model for anisotropic surface 
free energy 

Surface Energy  



Wulff construction 

G =   γs(θ,φ) dA 
γ1 

γ2 

γs(θ,φ) 



Single crystalline structures 

(b) truncated cube  

(e) octahedron  

(a) cube (c) cuboctahedron 

(d) truncated octahedron 



Decahedra 

Classic 

Ino’s 

Marks’ 



Icosahedra


C.L. Cleveland and Uzi Landman, J. Chem. Phys. 94, 7376 (1991) 

Size-dependent structures calculated for Ni clusters: 
Icosahedra for 142 – 2300 atoms; 
Marks’ decahedra for 2300 – 17000 atoms; 
Single crystal for > 17000 atoms. 



Nano 
Lab 

Varying structures of Ag clusters


SC 

Ic 

Dh 



Atomic motion and recrystallization 

Room Temp 
Room temperature 



Icosahed
ral:  
20 (111)
 faces 

Decahedr
al: 
10 (111)
 faces +  
  5 (100)
 faces 

Cuboctah
edral:  
8 (111)
 faces + 
6 (100)
 faces 

Possible shell structures of nano particles 

Nano 
Lab 

(Courtesy of C.M. Wei) 



Icosahedral ó Cubotohedral 

Icosahedral ó Decahedral 

Structural phase transition 

Nano 
Lab 

(Courtesy of C.M. Wei) 



0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 -2.7 
-2.8 
-2.9 
-3.0 
-3.1 
-3.2 
-3.3 
-3.4 
-3.5 
-3.6 

-2.7 
-2.8 
-2.9 
-3.0 
-3.1 
-3.2 
-3.3 
-3.4 
-3.5 
-3.6 

eV
/p

er
 a

to
m

 

N -1/3  


 DEC 
 FCC 
 ICO 

 


Binding energy for Al nano particles 

Nano 
Lab 

(Calculated by C.M. Wei) 
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Growth of Ag clusters on 18-layer CNT
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In	
  a	
  2D	
  random	
  walk,	
  the	
  diffusion	
  coef7icient	
  is	
  	
  
D	
  =	
  Γ·a2	
  	
  
Where	
  Γ	
  is	
  the	
  number	
  of	
  jumps	
  in	
  unit	
  time	
  (second)	
  and	
  a	
  is	
  the	
  
jumping	
  step	
  size,	
  i.e.,	
  lattice	
  spacing.	
  	
  
The	
  lifetime	
  of	
  an	
  adatom	
  is	
  controlled	
  by	
  two	
  collision	
  rates,	
  WAA	
  
(adatom-­‐adatom	
  collision)	
  and	
  WAI	
  (adatom-­‐island	
  collision).	
  	
  
The	
  “death	
  rate”	
  of	
  adatom,	
  i.e.,	
  #	
  of	
  adatoms	
  die	
  in	
  unit	
  time	
  (sec)	
  is	
  	
  
n/τA	
  	
  =	
  2WAA+	
  WAI	
  
Where	
  τA	
  is	
  the	
  lifetime,	
  and	
  n	
  is	
  the	
  number	
  density	
  of	
  adatoms	
  -­‐-­‐-­‐	
  #	
  of	
  
adatoms	
  per	
  unit	
  area.	
  
Now,	
  Let	
  R	
  be	
  the	
  deposition	
  rate	
  -­‐-­‐-­‐	
  #	
  of	
  adatoms	
  deposited	
  on	
  unit	
  
area	
  in	
  unit	
  time,	
  then	
  	
  
n	
  =	
  RτA	
  
The	
  number	
  of	
  sites	
  visited	
  by	
  an	
  adatom	
  during	
  its	
  lifetime	
  is	
  ΓτA	
  =	
  
DτA	
  /a2.	
  On	
  average,	
  #	
  of	
  sites	
  occupied	
  by	
  one	
  atom	
  is	
  1/na2	
  and	
  #	
  of	
  
sites	
  occupied	
  by	
  an	
  island	
  is	
  1/Na2.	
  	
  
where	
  N	
  is	
  the	
  number	
  density	
  of	
  islands	
  -­‐-­‐-­‐	
  #	
  of	
  islands	
  per	
  unit	
  area.	
  


How surface diffusion related to island density 




Hence,	
  the	
  probability	
  of	
  an	
  arriving	
  adatom	
  to	
  collide	
  with	
  an	
  
existing	
  atom	
  is	
  	
  
(DτA	
  /a2)/(1/na2	
  )	
  =	
  nDτA	
  	
  
Similarly,	
  the	
  probability	
  of	
  an	
  arriving	
  adatom	
  to	
  collide	
  with	
  an	
  
existing	
  island	
  is	
  	
  
(DτA	
  /a2)/(1/Na2	
  )	
  =	
  NDτA	
  	
  
Multiplying	
  the	
  above	
  two	
  terms	
  by	
  R	
  =	
  n/τA	
  gives	
  the	
  collision	
  
rate,	
  i.e.,	
  #	
  of	
  collisions	
  in	
  unit	
  time:	
  	
  
WAA	
  =	
  n2D;	
  	
  	
  	
  WAI	
  =	
  nND	
  
The	
  nucleation	
  rate,	
  i.e.,	
  the	
  rate	
  of	
  increase	
  of	
  the	
  number	
  density	
  
of	
  islands,	
  can	
  be	
  given	
  as	
  	
  
dN/dt	
  =	
  WAA	
  =	
  n2D	
  =	
  R2/(N2D)	
  
Substituting	
  n	
  with	
  n	
  =	
  R/ND.	
  
Then,	
  integration	
  leads	
  to	
  	
  
N3	
  =	
  (3R2/D)t	
  =	
  3Rθ/D	
  
where,	
  θ=Rt	
  is	
  the	
  total	
  coverage	
  up	
  to	
  time	
  t.	
  
Experimentally,	
  we	
  can	
  measure	
  N,	
  and	
  from	
  there	
  we	
  can	
  
determine	
  D.	
  	
  





Superstructures of 2D islands 
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Characteristics of Pb island---  
oscillatory and complementary contrast 

Type I Type II 
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Self-organized growth 

Size filtering 
 and/or 

Functional design 

 Artificial patterning 
and/or 

Natural templates + 

Size uniformity, Shape specification, Spatial orderliness and Functional homogeneity 



(c) 

hcp 

(a) 

fcc 

(b) 

Properties of nanopucks on Pb islands 



Various diffusion barriers 

Ed= 340 meV	



Eα= 55 meV	



 N ∝ Ed/[(i+2)kT],  i : number of atoms in critical nucleus 

fcc hcp 

Nano 
Lab 



Diffusion barriers for Ag and Pb nanopucks 
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Fig. 3
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Formation of Pb and Ag nanopucks 



Ag nanopucks on Pb islands  
of 4-layer thickness 

Type II 
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Spatial orderliness : I (3AL) > II (4AL) > II (3AL) > I (4AL) 

H.Y. Lin et al., PRL 94, 136101 (2005). 
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Size distribution of nanopucks 



Sizes and shapes of nanopucks 
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•  The quantitative derivations give the different 
binding energies of Ag adatoms on two 
triangular halves of a substrate unit cell. 

•  The difference in binding energy results in 
confined nucleation of Ag nanopucks at the fcc 
half cells exclusively and renders a site-specific 
arrangement. 

•  The order and size distribution of the nanopucks 
reveal a bi-layer oscillatory behavior, reflecting 
the electronic properties of the substrate. 

Summary 


